Bất cứ khi bạn có ý định đánh giá tổng thể về một đối tượng phức tạp, như là xem xét một chiếc ô tô để mua, con rể của bạn là người như thế nào, hoặc một tình huống bất kỳ mà không chắc chắn, bạn thường gán các “trọng số” cho các đặc tính của chúng. Điều này đơn giản như là một số đặc tính đã tác động đến hành động đánh giá của bạn hơn những thứ khác. Việc trọng số hóa này vẫn diễn ra mặc dù bạn có ý thức được về nó hay là không, đó là do cơ chế tác động của Hệ thống 1 quyết định. Đánh giá tổng thể của bạn về một chiếc xe hơi có thể đặt thêm hoặc bớt trọng số vào tính năng tiết kiệm nhiên liệu, tiện nghi, hoặc kiểu dáng. Đánh giá của bạn về chàng rể có thể phụ thuộc nhiều hay ít hơn vào các tiêu chí như là anh ta giàu có, đẹp trai hoặc đáng tin ra sao. Tương tự như vậy, việc đánh giá của bạn về một triển vọng không chắc chắn, định ra các trọng số lên những kết quả có thể xảy ra. Các trọng số chắc chắn có mối tương quan với những khả năng có thể xảy ra của những kết quả sau: Cơ may chiếm tới 50% để giành được một triệu đô-la hấp dẫn hơn rất nhiều so với cơ may chỉ có 1% để giành được cùng số tiền như vậy. Việc gán các trọng số đôi lúc có tính toán và chủ ý. Tuy nhiên, thông thường bạn chỉ là người quan sát một sự đánh giá tổng quát mà Hệ thống 1 của bạn cung cấp.
THAY ĐỔI NHỮNG CƠ MAY
Một lý do cho tính phổ biến của các dự đoán mạo hiểm trong nghiên cứu về hoạt động ra quyết định đó là nó cung cấp một quy tắc tự nhiên cho việc gán các trọng số tới các kết quả của một triển vọng: Một kết quả càng có khả năng xảy ra bao nhiêu càng có trọng lượng bấy nhiêu. Giá trị kỳ vọng của một trò may rủi là giá trị trung bình của các kết quả của nó, mỗi kết quả được gắn trọng số bằng khả năng xảy ra của các kết quả đó. Ví dụ, giá trị kỳ vọng của “20% cơ may để giành được 1.000 đô-la và 75% cơ may để giành được 100 đô-la” là 275 đô-la. Vào trước thời kỳ của Bernoulli, các trò may rủi đã được quy định bởi giá trị kỳ vọng của chúng. Bernoulli đã giữ lại phương pháp này phục vụ cho việc gán các trọng số cho kết quả, điều này được biết tới như là yếu tố kỳ vọng cơ bản nhưng được áp dụng vào tác dụng tâm của các kết quả. Lợi ích của một trò may rủi, trong lý thuyết của ông là giá trị trung bình của các lợi ích từ các kết quả của nó, mỗi kết quả được gắn trọng lượng bằng khả năng có thể xảy ra của nó.
Nguyên tắc kỳ vọng cơ bản không mô tả chính xác việc bạn tư duy về các kết quả có khả năng xảy ra có mối liên quan tới những triển vọng rủi ro như thế nào. Trong bốn ví dụ dưới đây, các cơ may của bạn đối với việc nhận được 1 triệu đô-la được nâng lên 5%. Liệu tin này có giá trị ngang bằng trong từng trường hợp hay không?
A. Từ 0 tới 5%.
B. Từ 5% tới 10%.
C. Từ 60% tới 65%.
D. Từ 95% tới 100%.
Nguyên tắc kỳ vọng cơ bản khẳng định rằng: Lợi ích của bạn tăng lên trong mỗi trường hợp chính xác 5% lợi ích của việc nhận được 1 triệu đô-la. Sự dự đoán này thể hiện kinh nghiệm của bạn? Dĩ nhiên là không.
Tất cả đều đồng ý rằng từ 0 tới 5% và từ 95% tới 100% hấp dẫn hơn từ 5% tới 10% hoặc 60% tới 65%. Việc gia tăng các cơ may từ 0 tới 5% biến đổi hoàn toàn tình thế, tạo ra một xác suất đã không hề tồn tại trước đó, một hy vọng về việc giành được phần thưởng. Đó là một thay đổi về chất, 5% tới 10% chỉ là một sự cải thiện về lượng. Sự thay đổi từ 5% tới 10% tăng gấp đôi xác suất giành chiến thắng, nhưng có một thỏa ước chung rằng tác dụng tâm lý của triển vọng không được nhân đôi. Tác động lớn của việc tăng từ 0 tới 5% minh họa cho hiệu ứng xác suất, đây là nguyên nhân khiến các kết quả rất khó xảy ra bị đặt nặng một cách không tương xứng hơn là chúng “đáng được”. Những người mua số lượng lớn vé số cho thấy bản thân họ mong đợi vào giá trị dự tính cho từng cơ may nhỏ để mong giành được một giải thưởng lớn.
Sự cải thiện từ 95% lên 100% là một sự thay đổi về chất khác có một tác động lớn, đây được gọi là hiệu ứng chắc chắn. Các kết quả gần như chắc chắn có ít trọng lượng hơn so với những biện minh về khả năng của họ. Để hiểu đúng sự ảnh hưởng chắn chắn, hãy tưởng tượng rằng bạn được thừa kế 1 triệu đô-la, nhưng người chị kế tham lam của bạn đã đưa đơn kiện ra tòa. Phán quyết dự tính sẽ được đưa ra vào ngày mai. Luật sư của bạn cam đoan với bạn rằng: Bạn có cơ may 95% giành phần thắng, nhưng ông này cũng đau xót nhắc nhở bạn rằng: Các quyết định của tòa không bao giờ có thể dự đoán đúng một cách tuyệt đối được. Bây giờ bạn được một công ty dàn xếp rủi ro tiếp cận, họ đề nghị mua lại vụ kiện của bạn với giá 910.000 đô-la, và bạn phải quyết định nhận số tiền này hay không ngay lập tức. Đề nghị này thấp hơn (40.000 đô-la) so với giá trị dự tính của việc chờ đợi sự điều đình (950.000 đô-la) nhưng bạn có chắc rằng bạn muốn từ chối? Nếu quả thực có một biến cố như vậy xảy đến trong cuộc đời bạn, bạn nên biết rằng ngành “quy hoạch đô thị cho các khu tái định cư” đã đưa ra một mức giá quá cao, bằng việc tận dụng lợi thế từ hiệu ứng chắc chắn.
Triển vọng và sự chắc chắn có cùng chung những hiệu ứng tác động trong phạm vi ảnh hưởng của những tổn thất. Khi một người thân của bạn được đưa tới phòng mổ có nguy cơ xấu lên tới 10% khả năng sẽ phải cắt bỏ một phần chân tay và chỉ có 5% cơ may là không bị cắt bỏ một phần chân tay. Do hiệu ứng xác suất tác động, chúng ta có xu hướng trầm trọng hóa những rủi ro nhỏ và luôn sẵn sàng để chi trả nhiều hơn rất nhiều giá trị dự tính nhằm loại trừ các rủi ro này. Sự khác biệt về tâm lý giữa nguy cơ 95% xảy ra thiên tai và sự chắc chắn về việc xuất hiện thiên tai thậm chí còn lớn hơn, hy vọng mong manh rằng mọi thứ có thể vẫn ổn hiện ra rất rõ. Việc đánh giá quá cao những khả năng nhỏ có thể xảy ra làm gia tăng sức cuốn hút của cả những trò may rủi lẫn những chính sách của bảo hiểm.
Kết luận ở đây rất dễ hiểu: Những trọng số để ra quyết định mà nhiều người gán cho các kết quả là không đồng nhất với khả năng xảy ra của các kết quả này, nó trái ngược với nguyên lý kỳ vọng. Các kết quả không chắc chắn được đánh giá cao, đây chính là hiệu ứng xác suất. Các kết quả gần như chắc chắn lại bị đánh giá không đúng mức có liên quan đến sự chắc chắn thực sự. Nguyên lý kỳ vọng, theo đó các giá trị được gắn trọng số dựa vào xác suất của nó, ít mang tính tâm lý.
Tuy nhiên, tình tiết trở nên phức tạp bởi tác động của luận cứ rằng một nhà chiến lược có lý trí cần phải tuân theo nguyên lý kỳ vọng. Đây chính là cách giải thích về lý thuyết viễn cảnh mà Von Neumann và Morgenstern đã giới thiệu vào năm 1944. Nguồn gốc nguyên lý kỳ vọng của họ khởi nguồn từ các tiên đề về sự chọn lựa dựa trên lý trí được nhìn nhận là một thành tựu vĩ đại, nó đã đặt lý thuyết lợi ích dự tính làm cốt lõi của mô hình tác nhân dựa trên lý trí về kinh tế và các ngành khoa học xã hội khác. 30 năm sau, khi Amos khai tâm cho tôi công trình của họ, ông ấy đã trình bày nó như thể một khách thể đáng kinh ngạc. Ông ấy cũng đã giúp tôi bước đầu làm quen với một thách thức nổi tiếng về lý thuyết này.
NGHỊCH LÝ CỦA ALLAIS
Vào năm 1952, vài năm sau khi công bố về lý thuyết của Von Neumann và Morgenstern, một hội nghị được tổ chức tại Paris nhằm thảo luận về tính rủi ro của kinh tế, đã thu hút nhà kinh tế học nổi danh tham dự. Các vị khách người Mỹ bao gồm cả các nhân vật đoạt giải Nobel sau này như Paul Samuelson, Kenneth Arrow, Milton Friedman và cả Jimmie Savage - một nhà Thống kê học hàng đầu lúc bấy giờ.
Trong số các nhà tổ chức buổi gặp mặt tại Paris có Maurice Allais, người mà sau này cũng giành được giải thưởng Nobel. Allais có điều gì đó bí mật, một cặp câu hỏi về sự chọn lựa mà ông đã thuyết trình trước khán giả đặc biệt của mình là các nhà khoa học khác. Trong khuôn khổ hội nghị đó, Allais đã chỉ ra rằng các vị khách mời của ông nhạy cảm với một hiệu ứng chắc chắn và do đó đã vi phạm lý thuyết lợi ích dự tính và lý thuyết này hình thành trên các tiên đoán dựa trên lý trí. Tập hợp các chọn lựa sau đây là một phiên bản giản lược của vấn đề nan giải mà Allais đã dựng lên. Trong các vấn đề A và B, bạn sẽ chọn cái nào?
A. 61% cơ may giành được 520.000 đô-la HOẶC 63% cơ may giành được 500.000 đô-la.
B. 98% cơ may giành được 520.000 đô-la HOẶC 100% cơ may giành được 500.000 đô-la.
Nếu bạn giống như hầu hết mọi người, bạn ưu tiên phương án bên tay trái trong vấn đề A và bạn ưu tiên phương án bên tay phải trong vấn đề B. Nếu đây quả là những sự ưu ái của bạn, bạn vừa mới phạm phải một lỗi logic và đã vi phạm phải quy tắc về sự chọn lựa dựa trên lý trí. Các nhà Kinh tế học có tiếng tăm đã tụ họp tại Paris cũng đã phạm phải những lỗi tương tự như vậy trong một phiên bản phức tạp hơn nhiều của “Nghịch biện Allais”.
Để thấy được tại sao những chọn lựa còn phải bàn luận, hãy hình dung rằng các kết quả sẽ được xác định bởi một lượt bốc thăm từ một chiếc bình có chứa 100 viên bi bạn giành phần thắng nếu bạn bốc được một viên bi đỏ, bạn thua nếu bạn bốc phải viên bi trắng. Trong vấn đề A, gần như tất cả mọi người ưu tiên chiếc bình bên tay trái hơn, mặc dù nó chứa các viên bi đỏ chiến thắng ít hơn, do sự khác biệt về số lượng của phần thưởng hấp dẫn hơn so với sự khác biệt về các cơ may chiến thắng. Trong vấn đề B, phần lớn chọn chiếc bình được đảm bảo với một món lời 500.000 đô-la. Hơn thế nữa, những người thỏa mãn với cả hai sự chọn lựa cho tới khi họ hướng đến tính logic của vấn đề.
So sánh hai vấn đề, bạn sẽ thấy được rằng hai chiếc bình trong vấn đề B là những phiên bản có lợi hơn so với những chiếc bình trong vấn đề A, với 37 viên bi trắng bị thay thế bằng những viên bi đỏ chiến thắng trong từng chiếc bình. Sự cải thiện bên tay trái rõ ràng là tốt hơn sự cải thiện bên tay phải, kể từ khi mỗi một viên bi màu đỏ mang lại cho bạn một cơ may giành được 520.000 đô-la bên tay trái và chỉ 500.000 đô-la bên tay phải. Do bạn đã khởi đầu vấn đề đầu tiên với một sự ưu ái dành cho chiếc bình bên tay trái, sau này nó đã được cải thiện nhiều hơn chiếc bình bên tay phải nhưng giờ đây bạn lại thích chiếc bình bên tay phải! Hình mẫu về sự chọn lựa không mang lại ý nghĩa logic nhưng hiệu ứng chắc chắn lý giải cho hiện tượng này. 2% khác biệt giữa 100% và 98% cơ may giành chiến thắng trong vấn đề B hấp dẫn hơn sự khác biệt tương tự giữa 63% và 61% trong vấn đề A.
Như Allais đã dự đoán trước, những người tham dự buổi gặp mặt không để ý rằng những ưu ái của họ đã vi phạm lý thuyết lợi ích đến khi ông thu hút sự chú ý của họ về thực trạng này thì buổi gặp mặt gần như đã kết thúc. Allais đã mong chờ tuyên bố này làm xôn xao dư luận: Các nhà lý luận về ra quyết định hàng đầu trên thế giới đã có những ưu ái không phù hợp với quan điểm cá nhân họ về tính hợp lý! Ông dường như đã tin rằng khán giả của mình sẽ bị thuyết phục để từ bỏ phương pháp tiếp cận mà ông phần nào khinh khỉnh đã gán cho là “trường học Mỹ” và thừa nhận một trong hai logic về sự chọn lựa mà ông đã phát triển. Ông đã bị thất vọng vì những gì diễn ra sau đấy không như dự tính của ông.
Các nhà kinh tế học đã không mặn mà với lý thuyết quyết định và phần lớn đã lờ đi vấn đề của Allais. Như vẫn thường xảy ra khi một lý thuyết hữu ích được trình bày rộng rãi mà không được thừa nhận, họ xem vấn đề như một sự dị thường và tiếp tục vận dụng lý thuyết thỏa dụng dự tính như thể không có gì xảy ra. Ngược lại, các lý luận ra quyết định bao gồm một tập hợp pha trộn giữa các nhà thống kê học, kinh tế học, triết học và tâm lý học đã thực hiện thử thách của Allais rất nghiêm túc. Khi Amos và tôi bắt đầu công việc của mình, một trong những mục tiêu ban đầu của chúng tôi đó là phát triển một bản miêu tả tâm lý thỏa đáng về nghịch biện của Allais.
Hầu hết các nhà lý luận ra quyết định bao gồm cả Allais, đã giữ vững niềm tin và đã cố gắng hướng các quy tắc về sự chọn lựa dựa trên lý trí khiến cho hình mẫu của Allais có thể sử dụng được. Trong nhiều năm qua đã có nhiều nỗ lực nhằm tìm kiếm một sự biện minh hợp lý cho hiệu ứng chắc chắn, tuy nhiên không có lý thuyết nào thuyết phục tuyệt đối. Amos chỉ có chút ít kiên nhẫn với những nỗ lực ấy; ông ấy đã gọi các nhà lý luận những người mà đã gắng công hợp lý hóa những vi phạm về lý thuyết thỏa dụng là “các vị trạng sư của sai lầm.” Chúng tôi đi theo một hướng khác. Chúng tôi đã duy trì lý thuyết thỏa dụng như một logic về sự chọn lựa dựa trên lý trí nhưng đã bỏ qua ý niệm cho rằng con người là những người chọn lựa lý tưởng. Chúng tôi đã thực thi nhiệm vụ phát triển một lý thuyết tâm lý mà sẽ mô tả các chọn lựa do con người đưa ra, bất chấp việc liệu rằng chúng có hợp lý hay không. Trong lý thuyết viễn cảnh, các trọng số quyết định sẽ không bị đồng nhất với các xác suất.
CÁC TRỌNG SỐ QUYẾT ĐỊNH
Rất nhiều năm sau khi công bố lý thuyết viễn cảnh, Amos và tôi đã tiến hành một nghiên cứu, trong đó chúng tôi đã đo lường các trọng số quyết định đã lý giải cho việc con người thường dành khoản tiền cược khiêm tốn cho các trò may rủi. Các ước tính cho những lợi ích được chỉ ra trong bảng 4.
Xác suất (%)
|
0
|
1
|
2
|
5
|
10
|
20
|
50
|
80
|
90
|
95
|
98
|
99
|
100
|
Trọng số quyết định
|
0
|
5.5
|
8.1
|
13.2
|
18.6
|
26.1
|
42.1
|
60.1
|
71.2
|
79.3
|
87.1
|
91.2
|
100
|
Bảng 4
Bạn có thể thấy rằng các trọng số quyết định đồng nhất với các xác suất tương ứng ở các mức độ: Cả hai đều bằng 0 khi kết quả là bất khả thi và cả hai đều bằng 100 khi kết quả nắm chắc trong tay. Tuy nhiên, các trọng số quyết định ở gần những điểm này đã đột ngột chệch khỏi xác suất. Ở mức thấp cuối, chúng tôi tìm ra hiệu ứng xác suất: Các biến cố không chắc xảy ra được đặt trọng số quá mức. Ví dụ, trọng số quyết định tương ứng với 2% cơ may là 8.1. Nếu người ta tuân theo các tiên đề về sự chọn lựa lý trí, trọng số quyết định sẽ là 2, do đó biến cố hiếm hoi này được đặt trọng số cao hơn với thừa số 4. Hiệu ứng chắc chắn ở điểm cuối khác của tỷ lệ xác suất thậm chí còn đáng chú ý hơn. Một nguy cơ 2% không giành được phần thưởng giảm lợi ích của trò may rủi tới 13%, từ 100 xuống 87.1.
Để đánh giá đúng sự bất cân xứng giữa hiệu ứng xác suất và hiệu ứng chắc chắn, hãy hình dung trước hết bạn có 1% cơ hội chiến thắng 1 triệu đô-la. Bạn sẽ biết được kết quả vào ngày mai. Giờ hãy tưởng tượng rằng bạn gần như chắc chắn giành được 1 triệu đô-la nhưng có 1% nguy cơ bạn không giành được gì. Lại một lần nữa, bạn sẽ được biết kết quả vào ngày hôm sau. Nỗi băn khoăn về tình huống thứ hai tỏ ra nổi bật hơn niềm hy vọng trong tình huống đầu tiên. Hiệu ứng chắc chắn cũng gây chú ý nhiều hơn hiệu ứng xác suất nếu kết quả là một tai nạn phẫu thuật hơn là một lợi ích tài chính. So sánh cường độ này với điều mà bạn dồn cả vào hy vọng mong manh trong một ca phẫu thuật gần như chắc chắn làm nguy hiểm tới tính mạng, so với nỗi sợ về 1% rủi ro.
Sự kết hợp giữa hiệu ứng chắc chắn và những hiệu ứng xác suất ở hai điểm cuối của tỷ lệ xác suất chắc chắn đi kèm với độ nhạy không tương xứng với những xác suất ở giữa. Bạn có thể thấy được rằng khoảng xác suất giữa 5% và 95% được liên ứng với một khoảng các trọng số quyết định nhỏ hơn nhiều (từ 13.2 đến 79.3), nhiều bằng khoảng 2/3 dự tính hợp lý. Các nhà thần kinh học đã xác nhận những lời nhận xét này, việc phát hiện ra các vùng thuộc não bộ phản ứng lại những thay đổi trong khả năng giành chiến thắng một phần thưởng. Sự phản ánh của não bộ đối với những biến đổi của các xác suất tương đồng một cách ấn tượng với các trọng số quyết định đã dự tính từ các sự chọn lựa.
Các xác suất cực thấp hoặc cực cao (dưới 1% hoặc trên 99%) là một trường hợp đặc biệt. Rất khó để áp đặt một trọng số quyết định đơn nhất cho các biến cố vô cùng hiếm, bởi đôi lúc chúng hoàn toàn bị lờ đi, thực chất là bị áp đặt một trọng số quyết định bằng 0. Mặt khác, nếu bạn không lờ đi các biến cố vô cùng hiếm, chắc chắn bạn sẽ đặt trọng số cao vượt mức. Hầu hết chúng ta đã bỏ ra rất ít thời gian để lo lắng về các vụ rò rỉ hạt nhân hoặc mơ mộng viển vông về những khoản thừa kế khổng lồ từ các mối quan hệ họ hàng không xác định. Tuy nhiên, khi một biến cố không chắc xảy ra trở thành tiêu điểm của sự chú ý, chúng ta sẽ áp đặt lên nó trọng số lớn hơn rất nhiều so với xác suất xứng đáng của nó. Hơn thế nữa, người ta gần như hoàn toàn không cảm nhận được những mức độ biến đổi của rủi ro trong số các xác suất nhỏ. 0.001% nguy cơ mắc bệnh ung thư không dễ được phân biệt với 0.00001% nguy cơ mặc dù cái trước sẽ biến đổi thành 3.000 ca ung thư trong dân số Mỹ và cái sau là 30 ca.
Khi bạn chú tâm tới một hiểm họa, bạn lo lắng và các trọng số quyết định phản ánh việc bạn lo lắng tới chúng như thế nào. Do hiệu ứng xác suất, sự lo lắng không cân xứng với xác suất về hiểm họa đó. Việc biến đổi hay làm giảm nhẹ rủi ro là không thỏa đáng; để loại trừ sự lo lắng xác suất cần phải được hạ xuống bằng 0.
Câu hỏi dưới đây được thống nhất từ một nghiên cứu về tính hợp lý của các đánh giá khách hàng về những rủi ro sức khỏe, nó đã được công bố bởi một nhóm các nhà kinh tế học vào những năm 1980. Bảng câu hỏi đã được gửi đến cho các bậc cha mẹ có con nhỏ.
Giả định rằng hiện tại bạn sử dụng một bình xịt côn trùng có giá 10 đô-la và cứ mỗi 10.000 bình xịt diệt côn trùng được sử dụng sẽ có 15 đứa trẻ nhiễm độc.
Bạn được biết tới một loại thuốc diệt côn trùng đắt hơn nhưng làm giảm rủi ro xuống còn 5 ca cho mỗi 10.000 bình xịt được sử dụng. Bạn sẽ sẵn sàng chi trả bao nhiêu cho nó?
Các bậc cha mẹ đã sẵn sàng chi trả một khoản bù thêm trung bình là 2.38 đô-la để giảm rủi ro xuống còn 2/3 từ 15 ca mỗi 10.000 bình xuống còn 5. Họ đã sẵn sàng chi trả 8.09 đô-la, nhiều hơn gấp ba lần, để loại trừ nó hoàn toàn. Các câu hỏi khác đã chỉ ra rằng các bậc cha mẹ đã xử lý hai rủi ro (hít phải khí và trẻ em nhiễm độc) như là những nỗi lo riêng biệt và đã sẵn lòng chi trả khoản tiền phụ trội chắc chắn cho sự loại trừ hoàn toàn một trong hai rủi ro. Khoản tiền trả thêm này tương hợp với tâm lý lo lắng nhưng không tương thích với hình mẫu lý trí.
MÔ HÌNH BỐN PHẦN
Amos và tôi tiến hành công việc của mình với lý thuyết viễn cảnh và nhanh chóng đạt được hai kết luận: Con người gắn liền các giá trị với những lợi ích và tổn thất hơn là danh lợi, các trọng số quyết định mà họ áp đặt cho các kết quả khác biệt với các xác suất. Ý niệm đó cũng chẳng mới mẻ gì nhưng trong sự kết hợp với nhau chúng đã lý giải một mẫu hình đặc biệt về những ưu ái mà chúng tôi đã gọi là mô hình bốn phần. Cái tên hẳn đã gây ra sự lúng túng. Các kịch bản được minh họa dưới đây:
CÁC LỢI ÍCH
|
CÁC TỔN THẤT
| |
XÁC SUẤT CAO
Hiệu ứng chắc chắn
|
95% cơ may thắng 10.000 đô-la.
Lo sợ sự thất vọng
ÁC CẢM RỦI RO
Chấp nhận sự dàn xếp không có lợi.
|
95% nguy cơ mất 10.000 đô-la.
Hy vọng tránh tổn thất
TÌM KIẾM RỦI RO
Loại bỏ sự dàn xếp có lợi.
|
XÁC SUẤT THẤP
Hiệu ứng xác suất
|
5% cơ may thắng 10.000 đô-la.
Hy vọng về lợi ích lớn
TÌM KIẾM RỦI RO
Loại bỏ sự dàn xếp có lợi.
|
5% nguy cơ mất 10.000 đô-la
Lo sợ tổn thất lớn
ÁC CẢM RỦI RO
Chấp nhận sự dàn xếp không có lợi.
|
Hình 13
- Hàng trên cùng trong mỗi ô biểu diễn một triển vọng minh họa.
- Hàng thứ hai mô tả cảm xúc trọng tâm mà triển vọng gợi lên.
- Hàng thứ ba cho biết hầu hết mọi người hành xử như thế nào khi được đề nghị một chọn lựa giữa một trò may rủi với một lợi ích đảm bảo (hoặc tổn thất) tương ứng với giá trị dự tính của chúng (ví dụ, giữa “95% cơ may thắng 10.000 đô-la” và “chắc chắn có 9.500 đô-la”). Các chọn lựa bị gọi là ác cảm rủi ro nếu điều đảm bảo được ưu tiên, gọi là tìm kiếm rủi ro nếu trò may rủi được ưu tiên.
- Hàng thứ tư mô tả các thái độ dự tính về bên bị và bên nguyên khi họ tranh luận về sự dàn xếp một vụ kiện dân sự.
Mô hình bốn phần về những ưu tiên được xem như là một trong những thành tựu cốt lõi của lý thuyết triển vọng. Ba trong số bốn ô là tương tự như nhau; ô thứ tư (góc trên bên phải) rất mới mẻ và không dự tính được.
- Góc trên bên trái là một trong những điều mà Bernoulli đã tranh luận: con người ác cảm với rủi ro khi họ nhìn nhận các viễn cảnh với một cơ may lớn đạt tới một lợi ích lớn. Họ sẵn lòng chấp nhận số ít hơn giá trị dự tính của một trò may rủi nhằm khóa chặt một lợi ích đảm bảo.
- Hiệu ứng xác suất trong ô dưới cùng bên trái giải thích tại sao trò xổ số phổ biến. Khi giải nhất cực lớn, những người mua vé số tỏ vẻ thờ ơ với sự thực rằng cơ may thắng giải của họ là rất nhỏ. Một tấm vé số là ví dụ sau cùng về hiệu ứng xác suất. Nếu không có một tấm vé số bạn không thể thắng giải, với một tấm vé số bạn có một cơ may và cho dù cơ may đó rất nhỏ hay đơn thuần là những cơ hội nhỏ không đáng kể. Dĩ nhiên, những gì người ta thu được từ một tấm vé có ý nghĩa nhiều hơn là một cơ may giành giải, đó là quyền được mơ ước giành chiến thắng một cách thú vị.
- Ô dưới cùng bên phải là nơi hợp đồng bảo hiểm được mua. Người ta sẵn lòng chi trả cho hợp đồng bảo hiểm nhiều hơn giá trị dự tính, nó giải thích cho việc các công ty bảo hiểm kiểm soát các chi phí và tạo lợi nhuận cho mình như thế nào. Ở đây một lần nữa, người ta mua sự phòng vệ trước một thảm họa không chắc xảy ra nhiều hơn, họ loại trừ một nỗi lo và mua về sự yên ổn trong tâm hồn.
Các kết quả dành cho ô trên cùng bên phải ban đầu đã làm chúng tôi kinh ngạc. Chúng tôi đã được tập cho quen với lối tư duy theo lối ác cảm rủi ro không tính tới ô dưới cùng bên trái, nơi các tấm vé số được ưu ái. Khi chúng tôi nhìn vào các chọn lựa của mình trước các phương án xấu, chúng tôi đã nhanh chóng nhận ra rằng chúng tôi chỉ mới tìm kiếm rủi ro trong phạm vi những tổn thất giống như chúng tôi đã ác cảm với rủi ro trong phạm vi những lợi ích. Chúng tôi không phải là những người đầu tiên quan sát sự tìm kiếm rủi ro với những cái nhìn tiêu cực, ít nhất hai tác giả đã báo cáo sự thực đó nhưng họ đã không làm gì nhiều với nó. Tuy nhiên, chúng tôi đã may mắn có được một cái khung khiến cho việc khám phá ra sự tìm kiếm rủi ro được làm sáng tỏ một cách dễ dàng và đó là một mốc quan trọng trong tư duy của chúng tôi. Thực vậy, chúng tôi đã nhận biết hai lý do cho hiệu ứng này.
Trước tiên, đó là độ nhạy giảm dần. Tổn thất chắc chắn rất bị ác cảm bởi phản ứng trước một tổn thất 900 đô-la sẽ mạnh mẽ hơn nhiều so với phản ứng trước một nguy cơ 90% tổn thất 1.000 đô-la. Yếu tố thứ hai thậm chí có thể còn mãnh liệt hơn: Trọng số quyết định tương ứng với một xác suất 90% chỉ ở khoảng 71, thấp hơn rất nhiều so với xác suất. Kết quả là khi bạn xem xét một lựa chọn giữa một tổn thất nắm chắc và một trò may rủi với một xác suất cao về một tổn thất lớn, độ nhạy giảm dần khiến cho tổn thất rõ ràng này bị ác cảm nhiều hơn, và hiệu ứng chắc chắn giảm bớt những ác cảm về trò may rủi. Hai yếu tố tương tự làm gia tăng sức lôi cuốn của điều chắc chắn và làm giảm bởi sức cuốn hút của trò may rủi khi các kết quả khả quan.
Trạng thái của hàm giá trị và các trọng số quyết định đều góp phần vào mô hình nhìn thấy được ở dòng đầu tiên của biểu hình 13. Tuy nhiên, tại dòng cuối cùng, hai yếu tố có hiệu lực theo các hướng đối lập. Độ nhạy giảm dần tiếp tục thiên về sự ác cảm rủi ro dành cho những lợi ích. Và sự tìm kiếm rủi ro dành cho những tổn thất nhưng việc đặt trọng số quá cao vào các xác suất thấp đã loại bỏ hiệu ứng này. Nó đã sinh ra mô hình được quan sát về hành động liều lĩnh trước những lợi ích và cẩn trọng trước những tổn thất.
Nhiều tình huống bất hạnh của con người đã nảy sinh trong ô trên cùng bên phải. Tại đây những người này phải đối mặt với những phương án vô cùng tệ khi chấp nhận những trò may rủi liều lĩnh, việc chấp thuận một xác suất cao về việc làm cho mọi thứ trở nên tồi tệ hơn trong sự hoán đổi lấy hy vọng nhỏ nhoi nhằm tránh một tổn thất lớn. Hành động chấp nhận rủi ro theo kiểu này thường biến những thất bại có thể kiểm soát thành các thảm họa. Ý nghĩ về việc chấp nhận tổn thất lớn chắc chắn là quá khó khăn và hy vọng về sự giảm nhẹ hoàn toàn lại quá lôi cuốn, để đưa ra quyết định hợp lý thì đã đến lúc để cắt giảm những tổn thất của ai đó. Đây chính là nơi các doanh nghiệp đang dần mất đi vị trí trong một lĩnh vực công nghệ cao, lãng phí số tài sản còn lại của họ trong những nỗ lực vô ích nhằm bắt kịp. Bởi rất khó để chấp nhận thất bại, bên thua trận trong các cuộc chiến thường sa đà vào cuộc chiến vượt qua ngưỡng mà tại đó, chiến thắng của bên còn lại đã nắm chắc và chỉ còn là vấn đề thời gian.
ĐÁNH BẠC DƯỚI SỰ BẢO TRỢ CỦA LUẬT PHÁP
Học giả Chris Guthrie đã đưa ra một ứng dụng thuyết phục về mô hình bốn phần trong hai trường hợp mà trong đó bên nguyên và bên bị ở một vụ kiện dân sự cân nhắc một sự dàn xếp khả thi. Những tình huống này khác nhau ở mặt mạnh của việc thưa kiện của bên nguyên.
Như trong một kịch bản chúng ta đã thấy trước đó, bạn là người đứng kiện trọng một vụ án dân sự trong đó bạn đưa ra yêu cầu bồi thường một khoản tiền lớn cho những thiệt hại. Phiên tòa diễn ra rất tốt đẹp và luật sư của bạn viện dẫn quan điểm chuyên gia rằng bạn có 95% cơ may thắng kiện ngay lập tức nhưng thêm vào lời cảnh báo: “Bạn chẳng bao giờ thực sự biết được kết quả cho tới khi hội thẩm đoàn quay trở lại.” Luật sư của bạn cố thuyết phục bạn chấp nhận một sự dàn xếp mà trong đó bạn có thể chỉ nhận được 90% đòi hỏi của bạn. Bạn đang rơi vào ô trên cùng bên trái trong mô hình bốn phần, và câu hỏi trong đầu bạn là: “Tôi có sẵn lòng chấp nhận thậm chí một nguy cơ nhỏ nhoi trong việc chẳng nhận được gì cả? Thậm chí 90% đòi hỏi là một số tiền rất lớn và tôi có thể rời khỏi đây với nó ngay bây giờ.” Hai sắc thái đã được gợi lên, cả hai hướng về cùng một phía: Sức cuốn hút của một lợi ích đảm bảo (và có thật) và nỗi sợ thất vọng tột cùng và hối tiếc nếu bạn bỏ qua một sự dàn xếp rồi thua kiện. Bạn có thể cảm thấy áp lực mà điển hình là dẫn tới những cảnh báo về cách thức hành động trong trường hợp này. Bên nguyên ở vào thế mạnh có khả năng sẽ ác cảm với rủi ro.
Giờ chuyển sang địa vị của bên bị trong trường hợp tương tự. Mặc dù bạn chưa hẳn đã từ bỏ hoàn toàn hy vọng về một quyết định có lợi cho bạn, bạn nhận ra rằng phiên tòa đang diễn ra một cách tồi tệ. Các luật sư của bên nguyên đã trình lên một sự dàn xếp mà trong đó bạn sẽ phải trả 90% yêu sách ban đầu của họ và rõ ràng là họ sẽ không chấp nhận ít hơn. Bạn sẽ hòa giải hay sẽ theo đuổi vụ kiện này? Do bạn đối mặt với một khả năng thua kiện cao, tình thế của bạn thuộc vào ô trên cùng bên phải. Thôi thúc lao vào vụ kiện trở nên mạnh mẽ: Sự dàn xếp mà bên nguyên đã đưa ra gần như khó chấp nhận như kết quả tệ hại mà bạn đối mặt và vẫn còn đó hy vọng thắng thế trên tòa. Ở đây một lần nữa, hai sắc thái trở nên phức tạp: Tổn thất cầm chắc thật ghê gớm và xác suất thắng kiện lại hết sức mê hoặc. Bên bị với một sự yếu thế gần như sẽ tìm kiếm rủi ro, sẵn sàng chơi một canh bạc hơn là chấp nhận một sự dàn xếp không thiện chí. Trong cuộc đối mặt giữa bên nguyên ác cảm rủi ro và bên bị tìm kiếm rủi ro, bên bị nắm đằng chuôi. Vị thế thuận lợi lớn hơn của bên bị nên được phản ánh trong các sự dàn xếp đã được đàm phán, với sự dàn xếp của bên nguyên kết quả phiên tòa dự tính ít thỏa đáng hơn. Sự dự đoán từ mô hình bốn phần này đã được xác định bởi các thí nghiệm đã diễn ra với các sinh viên luật và thẩm phán tập sự, và cũng thông qua các phân tích thống kê của các đàm phán có thực dưới sự che chở của các phiên tòa dân sự.
Giờ hãy xem xét “vụ kiện tụng nhẹ dạ”, khi một nguyên đơn với một tình thế mong manh đệ trình một yêu sách huênh hoang mà phần lớn có khả năng sẽ thua kiện. Cả hai bên đều nhận thức được về các khả năng xảy ra và cả hai biết trong một cuộc dàn xếp đàm phán, bên nguyên sẽ chỉ nhận được một phần rất nhỏ của con số yêu sách ban đầu. Cuộc đàm phán được tiến hành trong hàng cuối cùng của mô hình bốn phần. Bên nguyên ở trong ô bên trái, với một cơ may rất nhỏ thắng kiện một số tiền rất lớn; yêu sách “nhẹ da” này là một tấm vé xổ số hướng đến một giải thưởng lớn. Việc đặt trọng số quá mức lên cơ may thành công nhỏ hoàn toàn tự nhiên trong tình huống này, thúc đẩy bên nguyên trở nên liều lĩnh và hiếu chiến trong đàm phán. Đối với bên bị, kiện tụng là một mối họa với một rủi ro nhỏ về một kết quả vô cùng tồi tệ. Việc đặt trọng số quá mức lên nguy cơ nhỏ của một vụ thua kiện lớn thiên về sự ác cảm rủi ro và sự dàn xếp một khoản tiền vừa phải tương đương với việc mua bảo hiểm nhằm đối phó với biến cố không chắc xảy ra là một phán quyết bất lợi. Quả bóng giờ đây được chuyển sang chân người khác: Bên nguyên đang sẵn sàng cho canh bạc và bên bị muốn được an toàn. Nguyên đơn với những yêu sách viển vông có khả năng đạt được một sự dàn xếp rộng rãi hơn so với những số liệu thống kê về tình thế biện hộ.
Các quyết định được mô tả bởi mô hình bốn phần rõ ràng là không hợp lý. Bạn có thể thấu cảm trong từng vụ kiện với những cảm nhận của bên nguyên đơn và bên bị đơn, khiến họ chấp thuận một thái độ hiếu chiến hoặc hợp tác. Tuy nhiên, trong thời gian dài những sự chệch hướng khỏi giá trị dự tính có khả năng sẽ hao tiền tốn của. Xem xét một tổ chức lớn như: Thành phố New York và giả định rằng nó đối mặt với 200 vụ kiện tụng “nhẹ dạ” mỗi năm, mỗi vụ có 5% nguy cơ tiêu tốn của thành phố 1 triệu đô-la. Giả định xa hơn rằng trong từng phiên tòa thành phố có thể dàn xếp vụ kiện với một mức chi trả là 100.000 đô-la. Thành phố cân nhắc tới một trong hai chính sách mà nó sẽ ứng dụng được cho tất cả các tình huống như vậy: Hòa giải hay đưa nhau ra tòa. (Tính một cách đơn giản, tôi bỏ qua án phí.)
- Nếu thành phố tranh tụng tất cả 200 vụ kiện, thành phố sẽ tổn thất 10, gộp lại là một tổn thất 10 triệu đô-la.
- Nếu thành phố hòa giải mọi vụ kiện với 100,000 đô-la, tổng số tổn thất của thành phố sẽ là 20 triệu đô-la.
Khi bạn có cái nhìn xa về nhiều quyết định tương tự, bạn có thể thấy rằng việc chi trả một khoản tiền cao hơn mức thường nhằm tránh một rủi ro nhỏ của một tổn thất lớn thật tốn kém. Phép phân tích tương tự được ứng dụng vào từng ô trong mô hình bốn phần: Những sai lệch có hệ thống với giá trị dự tính thật tốn kém trong thời gian dài và quy tắc này ứng dụng cho cả sự ác cảm rủi ro lẫn tìm kiếm rủi ro. Việc đặt trọng số quá mức một cách kiên định vào những kết quả không chắc, một đặc thù của hoạt động ra quyết định theo trực giác kết cục là dẫn tới những kết quả bi đát.
NHỮNG PHÁT NGÔN VỀ MÔ HÌNH BỐN PHẦN
“Ông ấy bị thúc giục dàn xếp đòi hỏi nhỏ nhặt đó nhằm né tránh một tổn thất, tuy nhiên điều đó không có khả năng xảy ra. Đó là việc đặt trọng số quá mức lên những xác suất nhỏ. Kể từ khi ông ta có thể phải đối diện với nhiều vấn đề tương tự, ông ta sẽ trở nên khá giả vì việc không nhượng bộ đó.”
“Chúng tôi chưa từng để cho các kỳ nghỉ của mình bị đình lại vào phút cuối cùng. Chúng tôi luôn sẵn lòng trả thật nhiều cho điều chắc chắn.”
“Họ sẽ không cắt bỏ những tổn thất của mình chừng nào có một khả năng sụt giá xảy ra. Đây là sự tìm kiếm rủi ro trong những tổn thất.”
“Họ biết được hiểm họa của một vụ nổ khí ga là rất nhỏ, nhưng họ muốn nó được giảm nhẹ đi. Đó là hiệu ứng xác suất và họ muốn sự yên ổn trong đầu óc.”
No comments:
Post a Comment